

Removal of Colour Methylene Blue dye from contaminated water using satpuda region *Mangifera indica* fruit peel as a very low cost adsorbent

Shinde Anil V.^{1*}, Patil Bharat N.² and Beldar Anil G.³

1. MJPV Arts, Commerce and Shri V. K. K Science College Dhadgaon, Dist- Nandurbar (MS), INDIA

2. RFNS Senior Science College, Akalkuwa, Dist- Nandurbar (MS), INDIA

3. PSGVPM Arts, Commerce and Science College Shahada, Dist- Nandurbar (MS), INDIA

*anilshinde593@gmail.com

Abstract

The potential of *Mangifera Indica* fruit peel (MIFP) as an inexpensive adsorbent for the removal of methylene blue (MB) dye was examined in the current study. To determine the several parameters such as contact duration, initial dye concentration, adsorbent dose, pH and temperature, influenced adsorption, batch adsorption experiments were carried out. It was found that pseudo-second order kinetics worked best. The Langmuir, Freundlich and Temkin isotherm models were used to assess the experimental results.

The Langmuir isotherm adsorption isotherm was discovered to have the maximum adsorption capacity for monolayer coverage and it was determined best to describe the data. Results suggest that MIFP is a very effective low cost adsorbent for the removal of dyes from wastewater.

Keywords: *Mangifera Indica* fruit peel (MIFP), Dye removal, Methylene blue, Kinetics study and Adsorption isotherm.

Introduction

Water is essential for the survival of all living organisms. Today contamination of freshwater systems with a wide variety of organic pollutants is a subject of great concern. Out of all the contaminants present in industrial effluents, dyes are an important class of organic pollutants and can be identified even by human eye. Dyes are used as colouring agents in different industries such as textiles, food, paper, rubber, plastics, cosmetics, leather etc. The discharge of wastewater from these industries to water resources causes unavoidable problems due to the toxic and unpleasant nature of dyes. The presence of dyes in water in trace amount is undesirable because most of them are toxic, mutagenic and carcinogenic¹. Dyes also prevent light penetration and thereby reduce photosynthetic activities of water streams and disturb aquatic balance and equipoise (equilibrium). Thus, removal of dyes from wastewater before discharge is a challenging task.

Methylene blue (MB), a cationic dye, is most commonly used as colouring agent for cotton, wool and silk. It is also used as a staining agent to make certain body fluids and tissues easier to view during surgery and diagnostic

examinations. The medical applications of MB also include the treatment of methemoglobinemia and cyanide poisoning. In spite of several applications, this dye has a number of negative impacts on human beings and animals such as irritation of mouth, stomach, throat and oesophagus with symptoms of nausea, abdominal discomfort, vomiting and diarrhoea. Skin contact may cause mechanical irritation resulting in redness and itching. Thus, removal of MB dyes from wastewater is of great concern from human and environmental aspects.

Several techniques like flocculation, adsorption, oxidation, electrolysis, biodegradation, ion-exchange, photo catalysis have been employed for the removal of dyes from wastewater¹⁰. Amongst the various techniques, adsorption has received considerable attention due to its several advantages in terms of cost, ease of operation, insensitivity to toxic pollutants, flexibility and simplicity of design^{15,39}. Among variety of adsorbents, activated carbon may be logically the most preferred adsorbent for the removal of dyes because of its excellent adsorption ability⁴¹. However, widespread use of activated carbon is restricted because of its high cost⁴. Thus, attention has shifted to find cheaper and efficient alternatives of activated carbon.

Natural materials, domestic, agricultural and industrial wastes and bio-sorbents represent potential alternatives. A number of non-conventional and low cost adsorbents have been proposed by many workers for the removal of dyes^{9,20,42,43}. These include agricultural waste products such as saw dust¹, bark³⁴, orange peel⁴⁴, industrial waste products like metal hydroxide sludge³⁵, red mud⁴⁷, fly ash³³, clay materials like bentonite¹⁹, diatomite⁵, zeolites^{7,37}, siliceous materials silica beads²⁸, alunite³⁶, dolomite⁴⁶ and biosorbents such as chitosan⁴⁸, peat⁶, biomass^{3,31} and others (cyclodextrin^{13,14}, starch¹⁷, cotton¹¹ etc.).

Many low cost adsorbents such as jack fruit peel²¹, garlic peel²³, hazelnut shell¹⁸, pine apple stem²⁴, longan shell⁴⁹, spent tea leaves²², zeolite²⁶, corn cobs⁴⁰ etc. have been reported in literature for the adsorption of methylene blue dye. *Mangifera Indica* is a species of *Mangifera* family, commonly known as mango. Borneo, Java, Sumatra and the Malay Peninsula are home to the majority of the species of the genus *Mangifera*, which is native to tropical Asia. India and Myanmar are the birthplaces of the most widely grown *Mangifera* species, *M. indica*, or mango. In India, it is available throughout the year and abundantly during the

months of April, May and June. It is generally taken as a fresh fruit or consumed as juice. In Satapuda region, amchur preparation is done from the waste of peel of *Mangifera indica* fruit. The peels of *Mangifera Indica* are discarded as waste.

In view of the above facts, the present investigation was undertaken with the prime objective to explore the feasibility and utilisation of *Mangifera indica* fruit peel (MIFP) for the adsorptive removal of MB dyes. It has also been decided to optimize, wherever possible, the important variables which affect the adsorption capacity.

Material and Methods

Experimental: The batch equilibrium experiments were planned to determine the efficiency of MIFP for the removal of MB from aqueous solution. The adsorption experiments were carried out by taking 25 mL of adsorbate solutions with varying initial concentrations (25–250 mg/L for MB dye) in different conical flasks. For MB-MIFP system, the fixed quantity (0.05 g) of adsorbent was added to each flask kept on a shaker and equilibrated for 4 hours. After filtration, the residual concentration of MB in each flask was measured by a UV-Vis spectrophotometer at a pre-optimized λ_{max} of 665 nm. The effects of various parameters affecting adsorption process i.e. contact time, adsorbent dose, pH, particle size and temperature were studied and optimized.

The desorption experiments were conducted in different desorbing media. 0.5 g adsorbent was treated with 50 mL of 50 mg/L dye solution for 3 hours. The dye-loaded adsorbents were filtered and thoroughly washed several times with deionized doubly distilled water (DDDW) to remove any unadsorbed dye present. The dye-loaded adsorbents were then agitated with 25 mL of different desorbing solutions and equilibrated for 4 hours. The desorbed dye concentration was measured and percent desorption was calculated.

Results and Discussion

Effect of contact time and initial dye concentration: The effects of contact time and initial dye concentration on the adsorption capacity of MIFP at different initial concentrations of MB are shown in fig. 1. The figure shows that adsorption capacity increases with contact time and reaches to equilibrium after 3 hours. However, the increase is relatively higher during initial 30 minutes. Rapid increase in adsorption during the initial stage may presumably be due to the availability of vacant active sites on the surface of the adsorbent. The slow increase at the later stage is due to the diffusion of dye into the pores of the adsorbent because the external sites are completely occupied. It is also inferred from the figure that the adsorption capacity increases with increasing initial dye concentration at any dye-adsorbent contact time.

Effect of adsorbent dosage: The effect of adsorbent dose on the equilibrium adsorption capacity and removal efficiency for MB is shown in fig. 2. It has been observed that as the

concentration of MIFP adsorbent is increased from 0.4 to 2.0 g/L, removal efficiency increased rapidly from 92.6% to 93.1%. Thereafter, no significant change has been observed. As the adsorption saturation reached at adsorbent dose above 2.0 g/L, this concentration was chosen as optimum dose for further studies. The increase in removal efficiency in this range of adsorbent (0.4 – 2.0 g/L) is due to increase in total surface area and the availability of more binding sites for adsorption. The decrease in adsorption capacity with increase in adsorbent dosage might be due to interaction of adsorbent particles like aggregation or agglomeration which resulted in decrease of effective surface area per unit weight of the adsorbent.

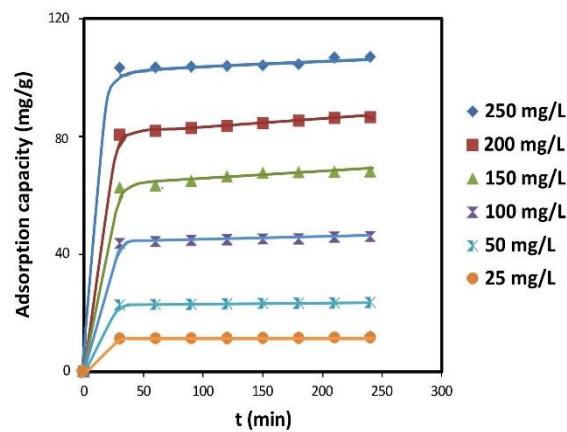


Fig. 1: Effect of contact time on the adsorption of MB onto MIFP at different concentrations

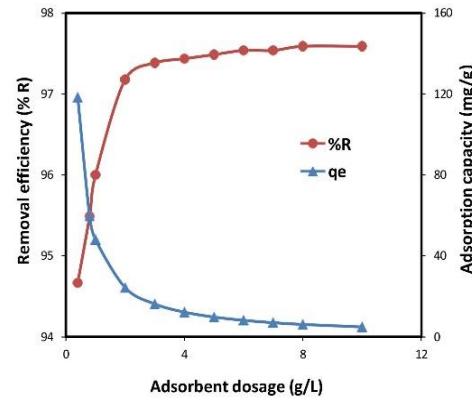


Fig. 2: Effect of adsorbent dosage on removal efficiency and adsorption capacity for the adsorption of MB onto MIFP

Effect of pH: The effect of pH on removal efficiency of MB dyes by MIFP adsorbent is depicted in fig. 3. The adsorption capacity has been observed to increase drastically with increase in pH of the solution (up to a value of 4.0 for MB) after which it remains almost constant with the further increase in pH up to 12.0. In acidic condition i.e. at lower pH, the surface of adsorbent absorbs H⁺ ions and acquires positive charge resulting in an electrostatic repulsion between positively charged adsorbent and cationic dyes (MB) which reduce the adsorption. Also there exists

competition between cationic dye and H^+ ions for the adsorption sites on MIFP adsorbent.

At higher pH, increased adsorption is observed because of the electrostatic attraction between cationic dyes and negatively charged adsorbent (because of the absorption of OH^- ions in alkaline medium). The result is in agreement with the existing hypothesis of increasing negatively charged sites/decreasing positively charged sites of adsorbent with increase of pH²⁹.

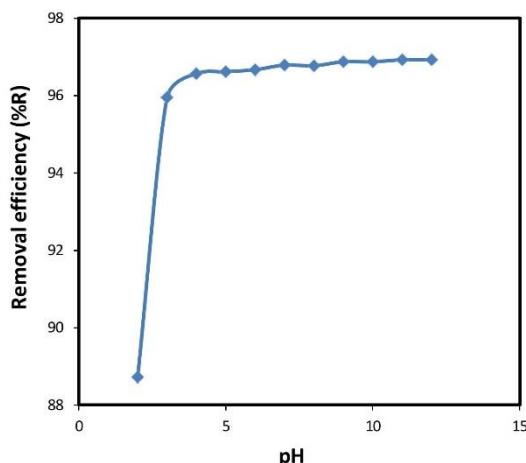


Fig. 3: Effect of pH on adsorption of MB on to MIFP

Point of zero charge: The point of zero charge (pH_{pzc}) value of MIFP was found to be 8.0 (Fig. 4). This indicates that the adsorbent surface has positive charge at $pH < 8.0$, net zero charge at $pH = 8.0$ and negative charge at $pH > 8.0$. Therefore, point of zero charge study reflects that the favorable condition for adsorption of cationic dye by MIFP adsorbent is the medium having pH greater than 8.0. Thus a safer pH value of 9.0 was selected for the adsorption studies of MB onto MIFP adsorbent.

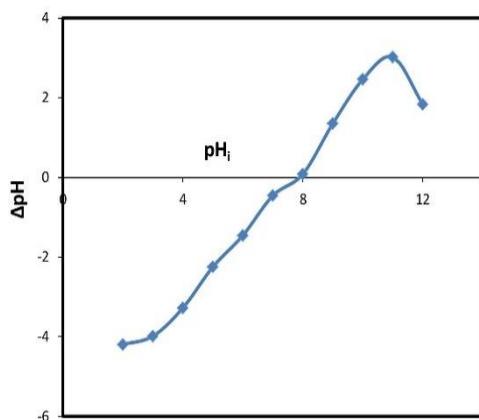


Fig. 4: Point of zero charge for MIFP

Effect of particle size: Adsorption of MB dyes on MIFP adsorbent was studied using three different size ranges of adsorbent particles (80–150, 150–200 and >200 BSS mesh) showing the effect of particle size on the removal efficiency

of MB. It has been observed that as the particle size is decreased, removal efficiency increased from 93% to 97.2% for MB. It is due to the fact that smaller particle size provides large surface area for adsorption which results in the higher removal of dye. Maximum removal efficiency is associated with mesh size >200. However, because of handling problem accompanying with small particles and for easy separation of solid and liquid phases, particles of 80–150 BSS mesh size range have been chosen throughout.

Effect of Temperature: The Adsorption of MB dyes on MIFP adsorbent dye increases rapidly with an increase in temperature from 30⁰ C to 60⁰ C. The increase in adsorption capacity was attributed to the enlargement of pore size and activation of the sorbent surface with temperature. Further rise in temperature increases the mobility of the large dye ions and reduces the swelling effect, thus enabling the large dye molecule to penetrate further.

Adsorption kinetics: The kinetic data have been analyzed in the light of different kinetic models, namely, pseudo-first order and pseudo-second order. The kinetic parameters associated with these models so obtained are summarized in table 1. On comparing the values of correlation coefficient, one can infer that the pseudo-second order kinetic model is best to represent the adsorption results of both dyes i.e. MB. From the linear plots shown in fig. 5, following mathematical equations have been obtained for the pseudo-second order kinetics for the adsorption of MB by MIFP.

Pseudo-second order kinetics have also been observed to obey the adsorption of MB onto different adsorbents such as wheat straw⁵¹, cotton stalk¹⁶, parsley stalk², rice hull ash¹², shaddock peel³⁰, *Arthospira platensis*³² and coconut bunch waste²⁵. The present values of pseudo-second order rate constant and $q_{e,cal}$ are incorporated in table 1.

$$\frac{t}{q_t} = \frac{t}{23.255} + \frac{1}{30.960} \quad (R^2 = 0.9999)$$

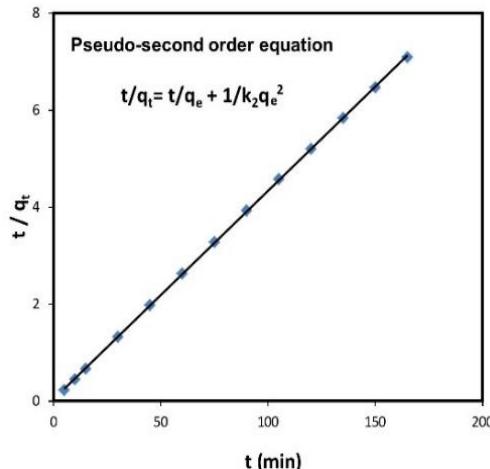


Fig. 5: Pseudo-second order kinetic model for the adsorption of MB onto MIFP

Table 1
Isotherm parameters for the adsorption of MB onto MIFP

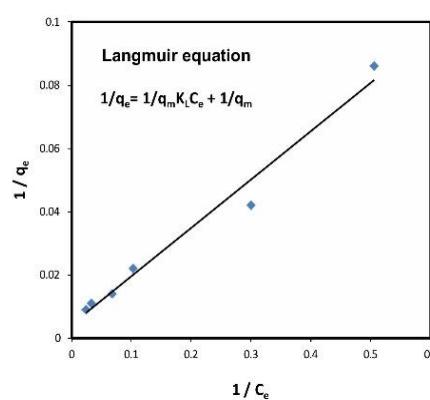
Isotherm models	Parameters	MB dye
Pseudo-first order	k_1 (min ⁻¹) $q_{e, exp}$ (mg/g)R _L $q_{e, cal}$ (mg/g) R ²	0.013 23.333 1.092 0.9022
Pseudo-second order	k_2 (g/mg min) $q_{e, exp}$ (mg/g)R _L $q_{e, cal}$ (mg/g) R ²	0.057 23.333 23.255 0.9999

Table 2
Pseudo-second order rate constant for the adsorption of MB onto different adsorbents

System	Pseudo-second order model		R ²
	k ₂ (g/mg min)	q _{e,cal} (mg/g)	
MB-Shaddock peel ³⁰	0.00005	131.19	0.9998
MB-Coconut bunch ²⁵	0.041	34.36	0.991
MB- <i>Mangifera indica</i> Fruit peel*	0.057	23.255	0.9999

* Present study

Table 3
Kinetic parameters for the adsorption of MB onto MIFP


Isotherm models	Parameters	MB dye
Langmuir	q _m (mg/g) K _L (L/mg) R _L R ²	227.3 0.0289 0.4089 0.9787
Freundlich	n K _F (mg ^{1-1/n} L ^{1/n} /g) R ²	1.438 8.758 0.9676
Temkin	b (J/mol) K _T (L/g) R ²	83.084 0.648 0.9756

Adsorption isotherms: The experimental results have been fitted on the Langmuir, Freundlich and Temkin isotherm models. For this purpose, the linear mathematical forms of these models were used. The values of different isotherm constants for the adsorption of MB onto MIFP are listed in table 3. In the light of relative values of correlation coefficients (R²), table 3 clearly indicates that the isotherm data for MB can be best represented by Langmuir adsorption isotherm model. The linear plot of this model illustrated in fig. 6 has generated following solved equation:

$$\frac{1}{q_e} = \frac{0.1527}{C_e} + \frac{1}{227.3} \quad (R^2 = 0.9787)$$

It is worth to mention here that adsorptive removal of MB dye by other adsorbents obtained from agricultural waste such as wheat straw⁵¹, cotton stalk¹⁶, cucumber peels², rice hull ash¹², shaddock peel³⁰, cottonseed hull⁵⁰, banana leaves²⁷ and *Bacillus subtilis*⁸ and clay³⁸ has also been found

to obey Langmuir isotherm. The values of Langmuir constants have been compared in table 3. This table clearly indicates that the results obtained in the present study fall within the ranges comparable to those reported earlier.

Fig. 6: Langmuir adsorption plot of MB onto MIFP adsorbent

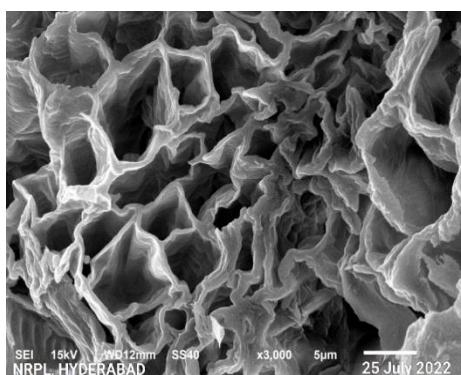


Fig. 7a: SEM image of MIFP adsorbent

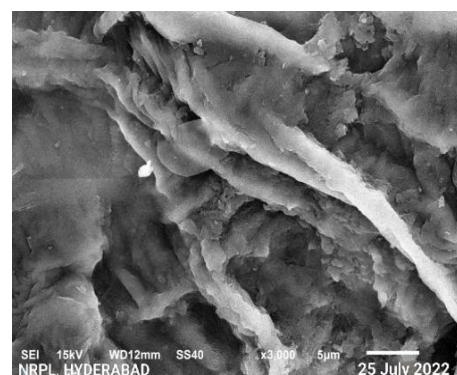


Fig. 7b: SEM image of MB-loaded MIFP

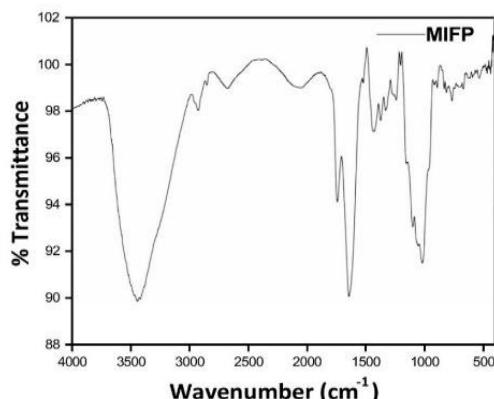


Fig. 8a: FTIR spectrum of MIFP adsorbent

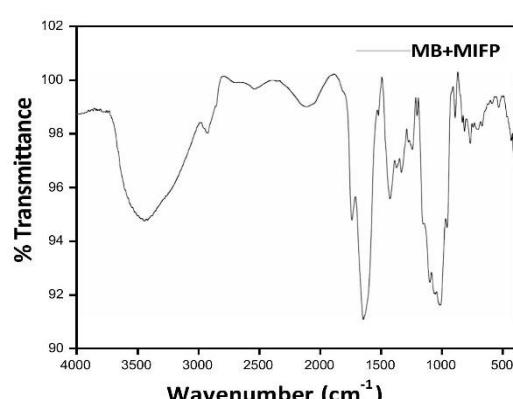


Fig. 8b: FTIR spectrum of MB-loaded MIFP

Material characterization: The morphological characteristics of MIFP adsorbent before and after adsorption with MB dye were analyzed by Scanning electron microscopy and the micrographs are presented in figures 7a and b. It can be seen in the micrograph that the surface of MIFP adsorbent is highly irregular with cracks and crevices. But after adsorption, the pores of MIFP adsorbent were filled with MB (Fig. 7b) dye molecules.

Presence of different functional groups was determined by employing FTIR spectrophotometric method. The FTIR spectra of MIFP before and after adsorption with MB are shown in figures 8a and b respectively. The band at 3442 cm^{-1} might be due to O–H stretching of carboxyl group. The band at 2925 cm^{-1} might be due to antisymmetric and symmetric stretching of C–H bond of methyl and methylene groups. Sharp band at 1742 cm^{-1} is due to C=O stretching and strong band at 1643 cm^{-1} may be attributed to C=O stretching of carboxylic acid. In MB-loaded MIFP, the decrease in peak intensity at 3442 cm^{-1} and 1643 cm^{-1} indicates the involvement of hydroxyl group and carboxyl group respectively, in binding with MB during adsorption. Minor changes in other frequencies have also been observed.

Conclusion

In the present study, the efficiency of MIFP as an adsorbent was investigated. It was found that adsorption is affected by various parameters like contact time, initial dye concentration, adsorbent dosage, pH and temperature. The equilibrium time for the adsorption of MB onto MIFP was found to be 3 hours. The adsorption study also revealed that

the optimum dosage for MB-MIFP system was 2.0 g/L. In acidic conditions, there is a drastic increase in uptake of dye up to pH = 4.0 for MB.

Thereafter, no significant change was observed. Kinetic study showed that the adsorptive removal by MIFP follows pseudo-second order kinetics. Adsorption isotherm study indicated that the equilibrium data were in agreement with Langmuir model for MB-MIFP. Consequently, it was concluded that MIFP is an effective adsorbent for the removal of MB dye from aqueous solution.

Acknowledgement

The authors are grateful to the Principal and Faculty of Department of Chemistry, PSGVP Arts. Commerce and Science College Shahada, for providing necessary laboratory facilities.

References

1. Agarwal S., Tyagi I., Gupta V.K., Ghasemi N., Shahivand M. and Ghasemi M., Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on *Ephedra strobilacea* saw dust and modified using phosphoric acid and zinc chloride, *J. Mol. Liq.*, **218**, 208–218 (2016)
2. Akkaya G. and Guzel F., Application of Some Domestic Wastes as New Low- Cost Biosorbents for Removal of Methylene Blue: Kinetic and Equilibrium Studies, *Chem. Eng. Comm.*, **201**, 557–578 (2014)
3. Aksu Z. and Tezer S., Biosorption of reactive dyes on the green alga *Chlorella vulgaris*, *Process Biochem.*, **40**, 1347–131(2005)

4. Al-Degs Y.S., Khraisheh M.A.M., Allen S.J. and Ahmad M.N., Adsorption characteristics of reactive dyes in columns of activated carbon, *J. Hazard Mater.*, **165**, 944–949 (2009)

5. Al-Ghouti M.A., Khraisheh M.A.M., Allen S.J. and Ahmad M.N., The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth, *J. Environ. Manage.*, **69**, 229–238 (2003)

6. Allen S.J., McKay G. and Porter J.F., Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, *J. Colloid Interf. Sci.*, **280**, 322–333 (2004)

7. Armagan B., Turan M. and Celik M.S., Equilibrium studies on the adsorption of reactive azo dyes into zeolite, *Desalination*, **170**, 33–39 (2004)

8. Ayla A., Cavus A., Bulut Y., Baysal Z. and Aytekin C., Removal of methylene blue from aqueous solutions onto *Bacillus subtilis*: determination of kinetic and equilibrium parameters, *Desalination*, **51**, 7596–7603 (2013)

9. Bharathi K.S. and Ramesh S.T., Removal of dyes using agricultural waste as low-cost adsorbents: a review, *Appl. Water Sci.*, **3**, 773–790 (2013)

10. Bhatnagar A. and Sillanpaa M., Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment- A review, *Chem. Eng. J.*, **157**(2–3), 277–296 (2010)

11. Bouzaïda I. and Rammah M.B., Adsorption of acid dyes on treated cotton in a continuous system. Mater, *Sci. Eng. C.*, **21**, 151–155 (2002)

12. Chen X., Lv S., Liu S., Zhang P., Zhang A., Sun J. and Ye Y., Adsorption of Methylene Blue by Rice Hull Ash, *Sep. Sci. Technol.*, **47**, 147–156 (2012)

13. Crini G., Studies of adsorption of dyes on beta-cyclodextrin polymer, *Bioresource Technol.*, **90**, 193–198 (2003)

14. Crini G. and Morcellet M., Synthesis and applications of adsorbents containing cyclodextrins, *J. Sep. Sci.*, **25**, 1–25 (2002)

15. Crini G., Non-conventional low-cost adsorbents for dye removal: a review, *Bioresource Technol.*, **97**, 1061–1085 (2005)

16. Deng H., Lu J., Li G., Zhang G. and Wang X., Adsorption of methylene blue on adsorbent materials produced from cotton stalk, *Chem. Eng. J.*, **172**, 326–334 (2011)

17. Delval F., Crini G., Vebrel J., Knorr M., Sauvin G. and Conte E., Starch- modified filters used for the removal of dyes from waste water, *Macromol. Symp.*, **203**, 165–171 (2003)

18. Dogan M., Abak H. and Alkan M., Adsorption of methylene blue onto Hazelnut shell: kinetics, mechanism and activation parameters, *J. Hazard Mater.*, **164**, 172–181 (2009)

19. Espantaleon A.G., Nieto J.A., Fernandez M. and Marsal A., Use of activated clays in the removal of dyes and surfactants from tannery waste waters, *Appl. Clay Sci.*, **24**, 105–110 (2003)

20. Gupta V.K. and Suhas, Applications of low cost adsorbents for dye removal: A review, *J. Environ. Manage.*, **90**, 2313–2342 (2009)

21. Hameed B.H., Removal of cationic dye from aqueous solution using Jack fruit peel as non-conventional low cost adsorbents, *J. Hazard Mater.*, **162**, 344–350 (2009)

22. Hameed B.H., Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions, *J. Hazard Mater.*, **161**, 753–759 (2009)

23. Hameed B.H. and Ahmad A.A., Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass, *J. Hazard Mater.*, **164**, 870–875 (2009)

24. Hameed B.H., Krishni R.R. and Sata S.A., A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions, *J. Hazard Mater.*, **162**, 305–311 (2009)

25. Hameed B.H., Mahmoud D.K. and Ahmad A.L., Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste, *J. Hazard Mater.*, **158**, 65–72 (2008)

26. Hor K.Y., Chee J.M.C., Chong M.N., Jin B., Saint C., Poh P.E. and Aryal R., Evaluation of physicochemical methods in enhancing the adsorption performance of natural zeolite as low-cost adsorbent of methylene blue dye from wastewater, *J. Clean Prod.*, **118**, 197–209 (2016)

27. Krishni R.R., Foo K.Y. and Hameed B.H., Adsorptive removal of methylene blue using the natural adsorbent-banana leaves, *Desalination Water Treat.*, **52**, 6104–6112 (2014)

28. Krysztafkiewicz A., Binkowski S. and Jesionowski T., Adsorption of dyes on a silica surface, *Appl. Surf. Sci.*, **199**, 31–39 (2002)

29. Kumar P.S., Ramalingam S., Senthamarai C., Niranjanaa M., Vijayalakshmi P. and Sivanesan S., Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, *Desalination*, **261**, 52–60 (2010)

30. Liang J., Wu J., Li P., Wang X. and Yang B., Shaddock peel as a novel low- cost adsorbent for removal of methylene blue from dye wastewater, *Desalin. Water Treat.*, **39**, 70–75 (2012)

31. Mahony T.O., Guibal E. and Tobin J.M., Reactive dye biosorption by *Rhizopus arrhizus* biomass, *Enzyme Microb. Tech.*, **31**, 456–463 (2002)

32. Mitrogiannis D., Markou G., Çelekli A. and Bozkurt H., Biosorption of methylene blue onto *Arthrosphaera platensis* biomass: Kinetic, equilibrium and thermodynamic studies, *J. Env. Chem. Eng.*, **3**, 670–680 (2015)

33. Mohan D., Singh K.P., Singh G. and Kumar K., Removal of dyes from wastewater using fly ash, a low-cost adsorbent, *Ind. Eng. Chem. Res.*, **41**, 3688–3695 (2002)

34. Morais L.C., Freitas O.M., Goncalves E.P., Vasconcelos L.T. and Gonzalez Beca C.G., Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process, *Water Res.*, **33**, 979–988 (1999)

35. Netpradit S., Thiravetyan P. and Towprayoon S., Application of “waste” metal hydroxide sludge for adsorption of azo reactive dyes, *Water Res.*, **37**, 763–772 (2003)

36. Özcar M. and Şengil I.A., Adsorption of acid dyes from aqueous solutions by calcined alunite and granular activated carbon, *Adsorption*, **8**, 301–308 (2002)

37. Ozdemir O., Armagan B., Turan M. and Celik M.S., Comparison of the adsorption characteristics of azo-reactive dyes on mesoporous minerals, *Dyes Pigments*, **62**, 49–60 (2004)

38. Ouasif H., Yousfi S., Bouamrani M.L., Kouali M. El, Benmokhtar S. and Talbi M., Removal of a cationic dye from wastewater by adsorption onto natural adsorbents, *J. Mater. Environ. Sci.*, **4**(1), 1–10 (2013)

39. Panigrahi Rajashree and Parida Reena, Influence of Thidiazuron on in vitro regeneration potential of *Kaempferia parviflora* Wall. Ex Baker from Eastern India, *Res. J. Biotech.*, **18**(9), 18–22 (2024)

40. Reddy P.M.K., Verma P. and Subrahmanyam C., Biowaste derived adsorbent material for methylene blue adsorption, *J. Taiwan Inst. Chem. Eng.*, **58**, 500–508 (2016)

41. Robinson T., Chandran B. and Nigam P., Removal of dyes from a synthetic textile dye effluent by bio-sorption on apple pomace and wheat straw, *Water Res.*, **36**, 2824–2830 (2002)

42. Robinson T., McMullan G., Marchant R. and Nigam P., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, *Bioresource Technol.*, **77**, 247–255 (2001)

43. Salleh M.A.M., Mahmoud D.K., Karim W.A.W.A. and Idris A., Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review, *Desalination*, **280**(1), 1–13 (2011)

44. Sivaraj R., Namasivayam C. and Kadirvelu K., Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions, *Waste Manage.*, **21**, 105–110 (2001)

45. Soni M. Sharma A.K., Srivastava J.K. and Yadav J.S., Adsorptive removal of Methylene blue dye from an aqueous solution using water hyacinth root powder as a low cost adsorbent, *Int. J. Chem. Sci. Appl.*, **3**(3), 338–3459 (2012)

46. Walker G.M., Hansen L., Hanna J.A. and Allen S.J., Kinetics of a reactive dye adsorption onto dolomitic sorbents, *Water Res.*, **37**, 2081–2089 (2003)

47. Wang S., Boyjoo Y., Choueib A. and Zhu Z.H., Removal of dyes from aqueous solution using fly ash and red mud, *Water Res.*, **39**, 129–138 (2005)

48. Wong Y.C., Szeto Y.S., Cheung W.H. and McKay G., Adsorption of acid dyes on chitosan-equilibrium isotherm analyses, *Process Biochem.*, **39**, 693–702 (2004)

49. Wang Y., Zhu L., Jiang H., Hu F. and Shen X., Application of longan shell as non-conventional low-cost adsorbent for the removal of cationic dye from aqueous solution, *Spectrochim Acta A*, **159**, 254–261 (2016)

50. Zhou Q., Gong W., Xie C., Yuan X., Li Y., Bai C., Chen S. and Xu N., Biosorption of Methylene Blue from aqueous solution on spent cottonseed hull substrate for *Pleurotus ostreatus* cultivation, *Desalin. Water Treat.*, **29**, 317–325 (2011)

51. Zhang W., Yan H., Li H., Jiang Z., Dong L., Kan X., Yang H., Li A. and Cheng R., Removal of dyes from aqueous solutions by straw based adsorbents: Batch and column studies, *Chem. Eng. J.*, **168**, 1120–1127 (2011).

(Received 08th August 2025, accepted 15th September 2025)